8. Properties of Curves

e. Tangent, Normal, and Binormal Vectors

1. Definitions

When dealing with vectors in R3\mathbb{R}^{3}, we use the standard basis vectors ı^\hat{\imath}, ȷ^\hat{\jmath} and k^\hat{k}. These are three mutually perpendicular unit vectors which form a right handed system.

When dealing with vectors along a curve, it is nice to have three basis vectors (i.e. three mutually perpendicular unit vectors which form a right handed system) which are adapted to the curve. These are called T^\hat{T}, N^\hat{N} and B^\hat{B}, and are collectively called a Frenet frame. To understand the definitions of the Frenet frame, first notice that the velocity, v\vec{v} determines the instantaneous direction of the curve while v\vec{v} and a\vec{a} determine the instantaneous plane of the curve.

Frenet Frame
The unit tangent vector T^\hat{T} is the unit vector tangent to the curve, i.e. the direction of v\vec{v}.
The unit normal vector N^\hat{N} is the unit vector perpendicular to v\vec{v} in the plane of v\vec{v} and a\vec{a} on the same side of v\vec{v} as a\vec{a}, i.e. N^\hat{N} is the unit vector in the direction of projva\text{proj}_{\bot \vec{v}}\vec{a}.
The unit binormal vector B^\hat{B} is the unit vector perpendicular to T^\hat{T} and N^\hat{N} related by the right hand rule, i.e. B^=T^×N^ \hat{B}=\hat{T}\times\hat{N}

The figures at the right show:
a curve in blue,
the unit tangent vector, T^\hat{T}, in red,
the unit normal vector, N^\hat{N}, in cyan and
the unit binormal vector, B^\hat{B} in magenta.

In the first figure, use the mouse to rotate the plot until N^\hat{N} is pointing straight at you. Notice that the curve instantaneously lies in the plane of T^\hat{T} and N^\hat{N}.

Now rotate the plot until B^\hat{B} is pointing straight at you. Notice that the curve instantaneously bends in the direction of N^\hat{N}.

1

The second figure shows how T^\hat{T}, N^\hat{N} and B^\hat{B} change as the point moves along the curve. Notice, T^\hat{T} is in the direction of the curve, N^\hat{N} is in the direction it is turning and B^\hat{B} is perpendicular to the plane of the motion.

We first need to justify that B^\hat{B} defined as T^×N^\hat{T}\times\hat{N} is in fact a unit vector. However, since T^\hat{T} and N^\hat{N} are perpendicular unit vectors T^=1N^=1andθ=90 |\hat{T}|=1 \qquad |\hat{N}|=1 \qquad \text{and} \qquad \theta=90^\circ Hence B^=T^×N^=T^N^sinθ=111=1 |\hat{B}| =|\hat{T}\times\hat{N}| =|\hat{T}|\,|\hat{N}|\sin\theta =1\cdot1\cdot1=1

Recall that ı^\hat{\imath}, ȷ^\hat{\jmath} and k^\hat{k} form a right handed triplet of mutually perpendicular unit vectors in that they satisfy: ı^×ȷ^=k^ȷ^×k^=ı^k^×ı^=ȷ^ \hat{\imath}\times\hat{\jmath}=\hat{k} \qquad \hat{\jmath}\times\hat{k}=\hat{\imath} \qquad \hat{k}\times\hat{\imath}=\hat{\jmath} where we cyclically rotate ı^\hat{\imath}, ȷ^\hat{\jmath} and k^\hat{k} in these formulas. Similarly:

T^\hat{T}, N^\hat{N} and B^\hat{B} form a right handed triplet of mutually perpendicular unit vectors in that they satisfy: T^×N^=B^N^×B^=T^B^×T^=N^ \hat{T}\times\hat{N}=\hat{B} \qquad \hat{N}\times\hat{B}=\hat{T} \qquad \hat{B}\times\hat{T}=\hat{N} where we cyclically rotate T^\hat{T}, N^\hat{N} and B^\hat{B} in these formulas.  

Justification

To see this, use your right hand to see that T^×N^\hat{T}\times\hat{N} points along B^\hat{B}. Then use the mouse to rotate the figure and use your right hand to see where N^×B^\hat{N}\times\hat{B} and B^×T^\hat{B}\times\hat{T} point.

1
[×]

Find the unit tangent vector, T^\hat{T}, the unit normal vector N^\hat{N}, and the unit binormal vector B^\hat{B} of the circle of radius RR in the xyxy-plane, parametrized as r(θ)=(Rcosθ,Rsinθ,0)\vec{r}(\theta)=(R\cos\theta,R\sin\theta,0) for general θ\theta and at θ=π4\theta=\dfrac{\pi}{4}.

First we find the velocity and its length: v=Rsinθ,Rcosθ,0v=(Rsinθ)2+(Rcosθ)2+02=R\begin{aligned} \vec{v} &=\langle -R\sin\theta,R\cos\theta,0\rangle \\ |\vec{v}| &=\sqrt{(-R\sin\theta)^2+(R\cos\theta)^2+0^2}=R \end{aligned} From these, we calculate the unit tangent vector: T^=vv=1RRsinθ,Rcosθ,0=sinθ,cosθ,0\begin{aligned} \hat{T} &=\dfrac{\vec{v}}{|\vec{v}|} =\dfrac{1}{R}\langle -R\sin\theta,R\cos\theta,0\rangle \\ &=\langle -\sin\theta,\cos\theta,0\rangle \end{aligned} Next, we compute the acceleration and notice that it is perpendicular to the velocity: a=Rcosθ,Rsinθ,0va=R2sinθcosθR2cosθsinθ=0\begin{aligned} \vec{a} &=\langle -R\cos\theta,-R\sin\theta,0\rangle \\ \vec{v}\cdot\vec{a} &=R^2\sin\theta\cos\theta-R^2\cos\theta\sin\theta=0 \end{aligned} So the unit normal is the unit vector in the direction of the acceleration. We compute the length of the acceleration and the unit normal vector: a^=(Rcosθ)2+(Rsinθ)2+02=RN^=aa=1RRcosθ,Rsinθ,0=cosθ,sinθ,0\begin{aligned} |\hat{a}| &=\sqrt{(-R\cos\theta)^2+(-R\sin\theta)^2+0^2}=R \\ \hat{N} &=\dfrac{\vec{a}}{|\vec{a}|} =\dfrac{1}{R}\langle -R\cos\theta,-R\sin\theta,0\rangle \\ &=\langle -\cos\theta,-\sin\theta,0\rangle \\ \end{aligned} Finally, the unit binormal vector is: B^=T^×N^=ı^ȷ^k^sinθcosθ0cosθsinθ0=ı^(0)ȷ^(0)+k^(sin2θ+cos2θ)=0,0,1\begin{aligned} \hat{B} &=\hat{T}\times\hat{N} =\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -\sin\theta & \cos\theta & 0 \\ -\cos\theta & -\sin\theta & 0 \end{vmatrix} \\ &=\hat\imath(0)-\hat\jmath(0)+\hat k(\sin^2\theta+\cos^2\theta) =\langle 0,0,1\rangle \end{aligned}

The figure shows T^\hat{T}, N^\hat{N} and B^\hat{B} moving around the circle. In particular, for θ=π4\theta=\dfrac{\pi}{4}: T^=12,12,0N^=12,12,0B^=0,0,1\begin{aligned} \hat{T} &=\left\langle \dfrac{-1}{\sqrt{2}},\dfrac{1}{\sqrt{2}},0\right\rangle \\ \hat{N} &=\left\langle \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}},0\right\rangle \\ \hat{B} &=\langle 0,0,1\rangle \end{aligned}

We check the three vectors are perpendicular by computing their dot products: T^N^=sinθcosθcosθsinθ=0T^B^=0+0+0=0B^N^=0+0+0=0\begin{aligned} \hat{T}\cdot\hat{N}&=\sin\theta\cos\theta-\cos\theta\sin\theta=0 \\ \hat{T}\cdot\hat{B}&=0+0+0=0 \\ \hat{B}\cdot\hat{N}&=0+0+0=0 \end{aligned}

Find the unit tangent vector, T^\hat{T}, the unit normal vector N^\hat{N}, and the unit binormal vector B^\hat{B} of the helix parametrized as r(θ)=(4cosθ,4sinθ,3θ)\vec{r}(\theta)=(4\cos\theta,4\sin\theta,3\theta) for general θ\theta and at θ=π4\theta=\dfrac{\pi}{4}

Hint

Like the circle, the acceleration is again perpendicular to the velocity which makes it easy to calculate the unit normal vector.

[×]

Answer

Generally: T^=45sinθ,45cosθ,35N^=cosθ,sinθ,0B^=35sinθ,35cosθ,45\begin{aligned} \hat{T} &=\left\langle \dfrac{-4}{5}\sin\theta,\dfrac{4}{5}\cos\theta,\dfrac{3}{5}\right\rangle \\ \hat{N} &=\langle -\cos\theta,-\sin\theta,0\rangle \\ \hat{B} &=\left\langle \dfrac{3}{5}\sin\theta,\dfrac{-3}{5}\cos\theta,\dfrac{4}{5}\right\rangle \end{aligned} For θ=π4\theta=\dfrac{\pi}{4}: T^=225,225,35N^=12,12,0B^=352,352,45\begin{aligned} \hat{T} &=\left\langle \dfrac{-2\sqrt{2}}{5},\dfrac{2\sqrt{2}}{5},\dfrac{3}{5}\right\rangle \\ \hat{N} &=\left\langle \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}},0\right\rangle \\ \hat{B} &=\left\langle \dfrac{3}{5\sqrt{2}},\dfrac{-3}{5\sqrt{2}},\dfrac{4}{5}\right\rangle \end{aligned}

[×]

Solution

First we find the velocity and its length: v=4sinθ,4cosθ,3v=16sin2θ+16cos2θ+9=5\begin{aligned} \vec{v} &=\langle -4\sin\theta,4\cos\theta,3\rangle \\ |\vec{v}| &=\sqrt{16\sin^2\theta+16\cos^2\theta+9}=5 \end{aligned} From these, we calculate the unit tangent vector: T^=vv=45sinθ,45cosθ,35 \hat{T} =\dfrac{\vec{v}}{|\vec{v}|} =\left\langle \dfrac{-4}{5}\sin\theta,\dfrac{4}{5}\cos\theta,\dfrac{3}{5}\right\rangle Next, we compute the acceleration and check that it is perpendicular to the velocity: a=4cosθ,4sinθ,0va=16sinθcosθ16cosθsinθ=0\begin{aligned} \vec{a} &=\langle -4\cos\theta,-4\sin\theta,0\rangle \\ \vec{v}\cdot\vec{a} &=16\sin\theta\cos\theta-16\cos\theta\sin\theta=0 \end{aligned} So the unit normal is the unit vector in the direction of the acceleration. We compute the length of the acceleration and the unit normal vector: a^=(4cosθ)2+(4sinθ)2+02=4N^=aa=cosθ,sinθ,0\begin{aligned} |\hat{a}| &=\sqrt{(-4\cos\theta)^2+(-4\sin\theta)^2+0^2}=4 \\ \hat{N} &=\dfrac{\vec{a}}{|\vec{a}|} =\langle -\cos\theta,-\sin\theta,0\rangle \\ \end{aligned} Finally, the unit binormal vector is: B^=T^×N^=ı^ȷ^k^45sinθ45cosθ35cosθsinθ0=ı^(35sinθ)ȷ^(35cosθ)+k^(45sin2θ+45cos2θ)=35sinθ,35cosθ,45\begin{aligned} \hat{B} &=\hat{T}\times\hat{N} =\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\[3 pt] \dfrac{-4}{5}\sin\theta & \dfrac{4}{5}\cos\theta & \dfrac{3}{5} \\[3 pt] -\cos\theta & -\sin\theta & 0 \end{vmatrix} \\ &=\hat\imath\left(\dfrac{3}{5}\sin\theta\right) -\hat\jmath\left(\dfrac{3}{5}\cos\theta\right) +\hat k\left(\dfrac{4}{5}\sin^2\theta+\dfrac{4}{5}\cos^2\theta\right) \\ &=\left\langle\dfrac{3}{5}\sin\theta,\dfrac{-3}{5}\cos\theta,\dfrac{4}{5}\right\rangle \end{aligned}

The figure shows T^\hat{T}, N^\hat{N} and B^\hat{B} moving around the helix. In particular, for θ=π4\theta=\dfrac{\pi}{4}: T^=225,225,35N^=12,12,0B^=352,352,45\begin{aligned} \hat{T} &=\left\langle \dfrac{-2\sqrt{2}}{5},\dfrac{2\sqrt{2}}{5},\dfrac{3}{5}\right\rangle \\ \hat{N} &=\left\langle \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}},0\right\rangle \\ \hat{B} &=\left\langle \dfrac{3}{5\sqrt{2}},\dfrac{-3}{5\sqrt{2}},\dfrac{4}{5}\right\rangle \end{aligned} It is easy to check these are 33 mutually perpendicular unit vectors.

[×]

Check

We check the three vectors T^=45sinθ,45cosθ,35N^=cosθ,sinθ,0B^=35sinθ,35cosθ,45\begin{aligned} \hat{T} &=\left\langle \dfrac{-4}{5}\sin\theta,\dfrac{4}{5}\cos\theta,\dfrac{3}{5}\right\rangle \\ \hat{N} &=\langle -\cos\theta,-\sin\theta,0\rangle \\ \hat{B} &=\left\langle\dfrac{3}{5}\sin\theta,\dfrac{-3}{5}\cos\theta,\dfrac{4}{5}\right\rangle \end{aligned} are perpendicular by computing their dot products: T^N^=45sinθcosθ45cosθsinθ=0T^B^=1225sin2θ1225cos2θ+1225=0B^N^=35sinθcosθ+35cosθsinθ=0\begin{aligned} \hat{T}\cdot\hat{N}&=\dfrac{4}{5}\sin\theta\cos\theta-\dfrac{4}{5}\cos\theta\sin\theta=0 \\ \hat{T}\cdot\hat{B}&=-\,\dfrac{12}{25}\sin^2\theta-\dfrac{12}{25}\cos^2\theta+\dfrac{12}{25}=0 \\ \hat{B}\cdot\hat{N}&=-\,\dfrac{3}{5}\sin\theta\cos\theta+\dfrac{3}{5}\cos\theta\sin\theta=0 \end{aligned}

[×]

In the examples of a circle and a helix, the acceleration is perpendicular to the velocity. So it is easy to find the normal vector. On the next page, we will find formulas which help us compute T^\hat{T}, N^\hat{N} and B^\hat{B} even if the acceleration is not perpendicular to the velocity.

© 2025 MYMathApps

Supported in part by NSF Grant #1123255